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1. Statistical parametric mapping

To identify the functional brain areas from the computed contrasts, the statistical parametric
mapping (SPM) technique [1] was implemented. This technique was introduced by Karl Friston to
process fMRI data. This method was also adapted for functional near infrared applications [2, 3].
We adapted this methodology for intraoperative functional RGB imaging. The basic idea was to
test for each camera pixel the linear association between measured contrasts and a theoretical
contrast that describes the patient hemodynamic response to a physiological stimulus. This
theoretical contrast was obtained by convolving the hemodynamic impulse response function [4]
to the window function that represents the patients physiological stimulus. This curve is called
expected hemodynamic response in the rest of the manuscript. A general linear model was
implemented to evaluate the linear association between measured and expected responses:

𝑌𝑐 = 𝑋𝑐𝛽𝑐 + 𝑒. (1)

𝑌𝑐 is the matrix of the contrast 𝑐 of dimension 𝑇 × 𝑁 (with 𝑇 the number of frames and 𝑁

the number of pixels). The contrast 𝑐 is either Δ𝐶𝐻𝑏𝑂2 or Δ𝐶𝐻𝑏. 𝑋𝑐 is the design matrix of the
contrast 𝑐 of dimension 𝑇 × 𝑆. 𝑆 designates the number of patient’s physiological conditions
(for example: rest and activity). The matrix 𝑋𝑐 contains the theoretical response for each
physiological condition: zero values for patient’s rest and the expected response of the contrast 𝑐
for patient’s activity.

When the contrast 𝑐 was Δ𝐶𝐻𝑏𝑂2 , the expected response was obtained by convolving the
hemodynamic impulse response function [4] to the window function representing the experimental
paradigm (rest: 0 and activity: 1). When the contrast 𝑐 was Δ𝐶𝐻𝑏, the hemodynamic response
computed for Δ𝐶𝐻𝑏𝑂2 was multiplied by −1. 𝛽𝑐 is a matrix of dimension 𝑆 × 𝑁 that contains
the parameters of the general linear model for the contrast 𝑐. These parameters explain the
association of each pixel to the physiological conditions expressed in the design matrix. 𝑒 is a
matrix of dimension 𝑇 × 𝑁 that represents the errors of the model. The values of the matrix 𝑒 are
supposed to be independent errors consisting of Gaussian noise of zero mean and variance matrix∑

𝑒 = 𝜎2 × 𝐼 (𝜎2 is the variance in 𝑒 and 𝐼 is the identity matrix). Under these assumptions, the
matrix 𝛽𝑐 can be estimated with the Gauss-Markov theorem:

𝛽𝑐 = (𝑋 𝑡
𝑐𝑋𝑐)+𝑋 𝑡

𝑐𝑌𝑐 . (2)



𝑡 is the transposition operator. The matrix 𝑡𝑠𝑡𝑎𝑡 of dimension 𝑁 × 1 represents the matrix of t
statistics for testing the null hypothesis (no cerebral activation):

𝑡𝑠𝑡𝑎𝑡 =
𝑐𝑣𝑡 𝛽𝑐√︁

𝜎2𝑐𝑣𝑡 (𝑋 𝑡
𝑐𝑋𝑐)+𝑐𝑣

. (3)

In this equation, 𝑐𝑣 is the contrast vector used to extract the parameters of the 𝛽𝑐 matrix
associated to one of the patient’s physiological conditions (one condition among the 𝑆 ones
expressed in the design matrix). For example, if two conditions are defined (rest and activity),
𝑐𝑣 = [1 0] aims to extract parameters associated to rest, and 𝑐𝑣 = [0 1] those related to
patient’s activity. In this study, we have chosen 𝑐𝑣 = [0 1].

1.1. Random field theory

The 𝑡𝑠𝑡𝑎𝑡 matrix can be used to compute statistical inferences, it means to indicate if a pixel is
associated or not with a functional brain area. In a multiple statistical comparison problem, the
definition of a statistical threshold is most often calculated with the Bonferroni correction method.
However in our study, this method is too restrictive due to the high image definition. To overcome
this issue, the random field theory (RFT) is commonly used in fMRI and fNIRS studies [2, 5, 6].
This method allows to threshold statistical parametric maps at 5% statistical significance level
with a correction for multiple comparisons (family-wise error) at the pixel level.

RFT is composed of several steps. First, the 𝑡𝑠𝑡𝑎𝑡𝑠 matrix is converted into z statistics (𝑍𝑠𝑡𝑎𝑡𝑠).
Then the 𝑍𝑠𝑡𝑎𝑡𝑠 matrix is smoothed with a Gaussian kernel. The full width at half maximum
(FWHM) of this kernel aims to define the number of resels (resolution elements) [7]. For
example, if a 100 × 100 pixels matrix is convoled with a Gaussian kernel of FWHM= 5 × 5
pixels, the number of resels is 20× 20 = 400. The Euler characteristic (𝐸𝐶) is then computed for
a 𝑍𝑠𝑡𝑎𝑡𝑠 threshold (𝑍𝑡ℎ). The 𝐸𝐶 aims to estimate the number of clusters obtained in an image
that contains randomly distributed values after a thresholding operation. For high threshold
values, the RFT indicates that: 𝑃[𝐸𝐶 (𝑍𝑡ℎ) ≥ 1] = 𝐸 [𝐸𝐶 (𝑍𝑡ℎ)] (the probability that at least
one cluster is detected in the image after thresholding the image at 𝑍𝑡ℎ is equal to the average
value of 𝐸𝐶 (𝑍𝑡ℎ)). For an image of 𝑧 statistics image smoothed with a Gaussian kernel and
composed of 𝑟𝑡𝑜𝑡 resels, the mean of 𝐸𝐶 computed for a threshold value 𝑍𝑡ℎ is:

𝐸 [𝐸𝐶 (𝑍𝑡ℎ)] = (2𝜋)−3/2 (4 ln(2)) 𝑟𝑡𝑜𝑡 𝑍𝑡ℎ exp
(
−𝑍2

𝑡ℎ/2
)
. (4)

The threshold value 𝑍𝑡ℎ was calculated such that 𝐸 [𝐸𝐶 (𝑍𝑡ℎ)] = 0.05. In other words, 𝑍𝑡ℎ

was calculated such that a cluster (a functional brain area) is identified in the 𝑍𝑠𝑡𝑎𝑡𝑠 matrix with
the rejection of the null hypothesis at 5% significance level (there is no cerebral activity, i.e.
measured and expected hemodynamic responses do not correspond).

1.2. Automatic thresholding procedure

In some cases, measured and expected hemodynamic responses did not correspond because the
actual hemodynamic impulse response in the patient’s tissue was different from the one used in this
paper (standard hemodynamic response function used in fMRI clinical studies). This leads to a
lack of detection of functional brain areas due to a too high threshold of the 𝑍𝑠𝑡𝑎𝑡 matrix using RFT.
In these cases, we applied an automatic thresholding procedure on 𝑍𝑠𝑡𝑎𝑡 maps: functional brain
areas were identified as portions of patient’s brain where the 𝑍𝑠𝑡𝑎𝑡 > `(𝑍𝑠𝑡𝑎𝑡 ) +0.75𝜎(𝑍𝑠𝑡𝑎𝑡 ) [8],
with ` and 𝜎 the mean and standard deviation functions, respectively. In intraoperative optical
imaging of intrinsic signals studies, an automatic thresholding procedure is often used to delineate
activation maps [9–12]. It should be noted that the method used to calculate the functional maps
was different in these studies. The authors applied an automatic thresholding procedure on the
relative intensity change maps to produce topological maps of brain activity.



The binary image obtained after the thresholding operations is indicated 𝑆𝑃𝑀𝑐 in the rest of
the paper.
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